
Project systems theory – Solutions
Final exam 2017–2018, Thursday 25 January 2018, 9:00 – 12:00

Problem 1 (3 + 3 + 8 = 14 points)

A simple model of a magnetic levitation system is given as

mq̈(t) = mg − 1

2

L

(1 + q(t))2
u2(t), (1)

with q(t) the position of the levitated mass with mass m > 0 and g > 0 the gravitational constant.
The input current to the electromagnet that suspends the mass is denoted by u(t) and L > 0 is a
constant.

(a) To write (1) in nonlinear state-space form, introduce the state

x =

[
x1

x2

]
=

[
q
q̇

]
. (2)

Then, it is immediate that ẋ1 = x2. The dynamics for x2 follows from (1), leading to

ẋ =

[
ẋ1

ẋ2

]
=

[
x2

g − 1
2m

L
(1+x1)2u

2

]
= f(x, u). (3)

(b) Let

x̄ =

[
x̄1

x̄2

]
=

[
q̄
0

]
(4)

be the desired equilibrium point for some q̄ > 0. To find the constant input u(t) = ū, the
equation

0 = f(x̄, ū) (5)

needs to be solved. Using (3), we obtain 0 = x̄2 for the first coordinate, which indeed
corresponds to (4). The equation for the second coordinate yields

g =
1

2m

L

(1 + q̄)2
ū2, (6)

which has the solution (recall that a positive solution ū > 0 is sought)

ū =

√
2mg

L

(
1 + q̄

)
. (7)

(c) In order to find the linearized dynamics around the equilibrium point given by x̄ and ū,
define the perturbations

x̃ = x− x̄, ũ = u− ū. (8)

Then, the linearized dynamics is given as

˙̃x(t) =
∂f

∂x
(x̄, ū)x̃(t) +

∂f

∂u
(x̄, ū)ũ(t), (9)
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after which it can be concluded from (3) that

∂f

∂x
(x, u) =

[
0 1

L
m (1 + x1)−3u2 0

]
. (10)

Evaluation of the result at (x̄, ū) gives, after substitution of (7),

∂f

∂x
(x̄, ū) =

[
0 1

2g(1 + q̄)−1 0

]
. (11)

Similarly,

∂f

∂u
(x, u) =

[
0

− 1
m

L
(1+x1)2u

]
(12)

such that

∂f

∂u
(x̄, ū) =

[
0

−
√

2gL
m

1
1+q̄

]
. (13)
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Problem 2 (14 points)

Consider the polynomial

p(λ) = λ4 + 3λ3 + λ2 + aλ+ 2a (14)

where a ∈ R.
As a first step in finding the values of a for which (14) is stable, note that a necessary condition

for stability is that all coefficients have the same sign. As a result, we need a > 0.
To proceed, consider the following Routh-Hurwitz table:

λ4 λ3 λ2 λ1 λ0

3× 1 3 1 a 2a
1× 3 a

(3− a)× 9 3− a 3a 6a (result of step 1)
9× 3− a 6a

(3− a)2 −3a(a+ 15) 6a(3− a) (result of step 2)

Recall that the Routh-Hurwitz criterion states that the polynomial p is stable if its two leading
coefficients have the same sign and the polynomial obtained in step 1 is stable. The leading
coefficients 1 and 3 satisfy the first criterion. Then, in order for the polynomial obtained in step 1
to be stable, it is again required that all coefficients have the same sign. This leads to the condition
0 < a < 3.

The repetition of this reasoning (note that the sign of 9 and 3 − a is the same as 0 < a < 3)
leads to the result of step 2. Again, for the polynomial obtained in step 2, a necessary condition
for stability is that all coefficients have the same sign. In this case, we need

−3a(a+ 15) > 0, (15)

which however contradicts with the earlier condition 0 < a < 3 (explicitly solving for (15) gives
−15 < a < 0). Consequently, there does not exist a parameter a ∈ R such that the polynomial
(14) is stable.
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Problem 3 (4 + 12 + 6 = 22 points)

Consider the system

ẋ(t) = Ax(t), y(t) = Cx(t), (16)

with state x(t) ∈ R2, output y(t) ∈ R, and where

A =

[
−6 3
−7 4

]
, C =

[
−2 1

]
. (17)

(a) The observability matrix of the pair (A,C) is given by[
C
CA

]
=

[
−2 1
5 −2

]
. (18)

Then, as the rows in this matrix are linearly independent, it follows that

rank

[
C
CA

]
= rank

[
−2 1
5 −2

]
= 2. (19)

Hence, the system (17) is observable.

(b) To find a nonsingular matrix T and real numbers a1, a2 such that

TAT−1 =

[
0 −a2

1 −a1

]
, CT−1 =

[
0 1

]
(20)

holds, the duality between controllability and observability can be exploited. Namely, ob-
servability of (A,C) implies that (AT, CT) is controllable. Thus, we consider the system

AT =

[
−6 −7
3 4

]
, CT =

[
−2
1

]
, (21)

and look for a transformation S such that

S−1ATS =

[
0 1
−a2 −a1

]
, S−1CT =

[
0
1

]
. (22)

Then, using[
0 −a2

1 −a1

]
=
(
S−1ATS

)T
= STAS−T,

[
0 1

]
=
(
S−1CT

)T
= CS−T, (23)

it is verified that the desired transformation T is given by

T = ST. (24)

In the remainder of this problem, a matrix S satisfying (22) will be constructed. Note that[
0 −a2

1 −a1

]
(25)

is in companion form, such that a1 and a2 are the coefficients of the characteristic polynomial
of AT. The characteristic polynomial reads

∆AT(λ) = det(λI −AT) =

∣∣∣∣ λ+ 6 7
−3 λ− 4

∣∣∣∣ = (λ+ 6)(λ− 4) + 21 = λ2 + 2λ− 3, (26)

4



such that

a1 = 2, a2 = −3. (27)

Observe that ∆AT(λ) = ∆A(λ). To find the corresponding transformation S, compute

q2 = CT =

[
−2
1

]
, (28)

q1 = ATCT + a1C
T =

[
5
−2

]
+ 2

[
−2
1

]
=

[
1
0

]
, (29)

after which the transformation matrix S is given as

S =
[
q1 q2

]
=

[
1 −2
0 1

]
. (30)

Using the inverse

S−1 =

[
1 2
0 1

]
, (31)

it is readily verified that (22) holds. Finally, the relation (24) gives the desired transformation

T = ST =

[
1 0
−2 1

]
. (32)

(c) By similarity transformation, the matrix A−GC and

T (A−GC)T−1 = TAT−1 − TGCT−1 (33)

have the same eigenvalues. Denoting Ḡ = TG and defining the resulting matrix as

Ḡ =

[
g2

g1

]
, (34)

it follows that

TAT−1 − ḠCT−1 =

[
0 −(a2 + g2)
1 −(a1 + g1)

]
. (35)

Here, the result (20) is used. As the matrix in (35) is in companion form (in fact, the
transpose of a companion form), it follows that its characteristic polynomial reads

∆T (A−GC)T−1(λ) = λ2 + (a1 + g1)λ+ (a2 + g2). (36)

To place the eigenvalues at −2 and −4, this polynomial should have these values as its roots,
i.e.,

λ2 + (a1 + g1)λ+ (a2 + g2) = (λ+ 2)(λ+ 4) = λ2 + 6λ+ 8, (37)

leading to

g1 = 6− a1 = 6− 2 = 4, g2 = 8− a2 = 8 + 3 = 11. (38)

Then, using the definition Ḡ = TG and (34), it follows that

G = T−1Ḡ =

[
1 0
2 1

] [
11
4

]
=

[
11
26

]
. (39)
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Problem 4 (4 + 4 + 7 + 7 = 22 points)

Consider the system

ẋ(t) =

 8 2 −7
−12 −2 14

0 0 −3

x(t) +

 0
1
1

u(t). (40)

(a) Stability of (40) is determined by the eigenvalues of A. Due to the upper block-triangular
structure of A, its spectrum equals

σ(A) = σ

([
8 2
−12 −2

])
∪ {−3}. (41)

The eigenvalues of the upper-left block are obtained as the roots of∣∣∣∣ λ− 8 −2
12 λ+ 2

∣∣∣∣ = (λ− 8)(λ+ 2) + 24 = λ2 − 6λ+ 8 = (λ− 2)(λ− 4), (42)

which read 2 and 4. Thus, the spectrum of A reads

σ(A) = {−3, 2, 4} (43)

and the system is not (asymptotically stable). Namely, there exist eigenvalues with positive
real parts.

(b) The reachable subspace W of the system (40) is given as

W = im
[
B AB A2B

]
= im

 0 −5 5
1 12 −6
1 −3 9

 , (44)

= im

 0 −5 5
1 15 −6
1 0 9

 = im

 0 −1 5
1 3 −6
1 0 9

 , (45)

where elementary column operations are performed to obtain the results (45). Now, as 5
−6
9

 = 9

 0
1
1

− 5

−1
3
0

 , (46)

it follows that the dimension of the reachable subspaceW is two. Thus, a basis representation
is given as

W = span{

 0
1
1

 ,
−1

3
0

}. (47)

6



For the remainder of this problem, consider the system

ẋ(t) =

 a 0 0
1 a 0
0 b −1

x(t) +

 1
0
b

u(t), (48)

where a and b are real parameters.

(c) Using the Hautus test, the system (48) is controllable if and only if

rank
[
A− λI B

]
= n (49)

for all λ ∈ σ(A). Here, n = 3.

Due to the lower triangular structure of A, it is immediate that

σ(A) = {a,−1}, (50)

where the eigenvalue a has multiplicity 2. For λ = a, (49) reads

[
A− aI B

]
=

 0 0 0 1
1 0 0 0
0 b −1− a b

 , (51)

whereas λ = −1 leads to

[
A+ I B

]
=

 a+ 1 0 0 1
1 a+ 1 0 0
0 b 0 b

 , (52)

For the matrix in (52) to have full column rank n, it is necessary that b 6= 0. In this case
(52) has full column rank for all a. Returning to (51), it is clear that the condition b 6= 0
implies full column rank for all a. Thus, the system (48) is controllable if and only if

a ∈ R, b 6= 0. (53)

(d) The system (48) is stabilizable if and only if

rank
[
A− λI B

]
= n (54)

for all λ ∈ σ(A) such that Re(λ) ≥ 0, as follows from the Hautus test. As before, n = 3.

Considering the spectrum of A in (50), two cases can be considered. First, for a < 0,
the system is asymptotically stable and, hence, stabilizable. Thus, a < 0 is sufficient for
stabilizability. Next, we consider the case a ≥ 0. Then, the matrix in (51) needs to have full
column rank, which is implied by the condition a ≥ 0 and the system is stabilizable.

Combining the two cases above, it is concluded that (48) is stabilizable for all

a ∈ R, b ∈ R. (55)

Finally, note that the condition for controllability (53) implies stabilizability as expected.
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Problem 5 (4 + 14 = 18 points)

Consider the system

ẋ(t) = Ax(t) +Bu(t) (56)

and recall the general solution for a given initial condition x0 and input u(·) as

xu(t, x0) = eAtx0 +

∫ t

0

eA(t−s)Bu(s) ds. (57)

Assume that the system (56) is controllable and define the input signal

ū(t) = BTe−ATtK−1e−ATxT (58)

for some xT ∈ Rn and fixed T > 0 and where

K =

∫ T

0

e−AsBBTe−ATs ds. (59)

(a) Let x0 = 0. Then, a direct computation shows

xū(T, 0) =

∫ T

0

eA(T−s)Bū(s) ds (60)

=

∫ T

0

eA(T−s)BBTe−ATsK−1e−ATxT ds (61)

= eAT

∫ T

0

e−AsBBTe−ATs dsK−1e−ATxT (62)

= eATKK−1e−ATxT (63)

= eAT e−ATxT (64)

= xT . (65)

Here, (61) follows by direct substitution of (58), whereas the definition of K in (59) is used
to obtain (63).

(b) Nonsingularity of K will be shown by contradiction. To this end, assume that K is singular.
Then, there exists v ∈ R, v 6= 0, such that Kv = 0. As a result, also vTKv = 0, i.e.,

0 =

∫ T

0

vTe−AsBBTe−ATsv ds =

∫ T

0

∥∥BTe−ATsv
∥∥2

2
ds, (66)

where ‖ · ‖2 denotes the Euclidian norm. As BTe−ATsv is a continuous function of s, (66) is
equivalent to

BTe−ATsv = 0, ∀s ∈ [0, T ]. (67)

In the remainder, we will consider the transposed version

vTe−AsB = 0, ∀s ∈ [0, T ]. (68)

Evaluating (68) for s = 0 leads to

vTB = 0. (69)

Next, as vTe−AsB is identically zero over the interval [0, T ], it follows that

dk

dsk

{
vTe−AsB

}
= (−1)kvTAke−AsB = 0 (70)
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for all s ∈ [0, T ]. Evaluation of (70) for s = 0 gives

vTAkB = 0, k = 1, 2, . . . , (71)

which in turn implies

vT
[
B AB · · · An−1B

]
= 0, (72)

where it is recalled that v 6= 0. Thus,

rank
[
B AB · · · An−1B

]
< n, (73)

which contradicts the fact that (56) is controllable. As a result, K is nonsingular.

(10 points free)
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