Project systems theory — Solutions
Final exam 2017-2018, Thursday 25 January 2018, 9:00 — 12:00

Problem 1 (34 3 + 8 = 14 points)

A simple model of a magnetic levitation system is given as

mit) = mg - 5o () (1)

with ¢(t) the position of the levitated mass with mass m > 0 and g > 0 the gravitational constant.
The input current to the electromagnet that suspends the mass is denoted by u(t) and L > 0 is a
constant.

(a)

To write (1) in nonlinear state-space form, introduce the state
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Then, it is immediate that 1 = z2. The dynamics for zo follows from (1), leading to
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be the desired equilibrium point for some ¢ > 0. To find the constant input u(t) = @, the
equation

0= f(z,u) (5)

needs to be solved. Using (3), we obtain 0 = Zo for the first coordinate, which indeed
corresponds to (4). The equation for the second coordinate yields
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which has the solution (recall that a positive solution @ > 0 is sought)
u=1\/—(1+7). (7)

In order to find the linearized dynamics around the equilibrium point given by z and 4,
define the perturbations

T=x-1, U=1u—1au. (8)
Then, the linearized dynamics is given as
s Of of _ ..
z(t) = %(x,u)x(t) + %(x, a)u(t), (9)



after which it can be concluded from (3) that
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Evaluation of the result at (Z,u) gives, after substitution of (7),

g(i u) = 0 !

or " T 290+t 0"
Similarly,

a—f(:t u) = _ 0

ou’ o _*%(14_21)2“
such that

of, . [ 0
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Problem 2 (14 points)

Consider the polynomial
p(A) = A+ 30 + A2 +a)+ 2a (14)

where a € R.

As a first step in finding the values of a for which (14) is stable, note that a necessary condition
for stability is that all coefficients have the same sign. As a result, we need a > 0.

To proceed, consider the following Routh-Hurwitz table:

)\4 /\3 )\2 )\1 /\O
3% 1 3 1 a 2a
1x 3 a
(3—a)x 9 3—a 3a 6a (result of step 1)
9x 3—a 6a

(B3—a)? —3ala+15) 6a(3 —a) (result of step 2)

Recall that the Routh-Hurwitz criterion states that the polynomial p is stable if its two leading
coeflicients have the same sign and the polynomial obtained in step 1 is stable. The leading
coefficients 1 and 3 satisfy the first criterion. Then, in order for the polynomial obtained in step 1
to be stable, it is again required that all coefficients have the same sign. This leads to the condition
0<a<3.

The repetition of this reasoning (note that the sign of 9 and 3 — a is the same as 0 < a < 3)
leads to the result of step 2. Again, for the polynomial obtained in step 2, a necessary condition
for stability is that all coefficients have the same sign. In this case, we need

—3a(a + 15) > 0, (15)

which however contradicts with the earlier condition 0 < a < 3 (explicitly solving for (15) gives
—15 < a < 0). Consequently, there does not exist a parameter a € R such that the polynomial
(14) is stable.



Problem 3 (4 + 12 + 6 = 22 points)

Consider the system

x(t) = Ax(t), y(t) = Cx(t), (16)

with state z(t) € R?, output y(¢) € R, and where

(a)

A:[:gﬂ, c=[-21]. (17)

The observability matrix of the pair (A4, C) is given by

C -2 1
{CA} = [ 5 —2]' (18)
Then, as the rows in this matrix are linearly independent, it follows that
C -2 1
rank[CA] —rank{ 5 _2} =2. (19)

Hence, the system (17) is observable.

To find a nonsingular matrix T and real numbers a;, as such that

0 —a9

TAT ! = [
1 —aq

], cT'=101] (20)

holds, the duality between controllability and observability can be exploited. Namely, ob-
servability of (A, C) implies that (A", C7T) is controllable. Thus, we consider the system

S B s .

and look for a transformation S such that

S1ATS — [ 0 1 } . ST = m . (22)
—Q2 —ai 1
Then, using
002l _ (g-1475)" — 5Tas T, [01]=(s"c) T =csT, (23)
1 —aq ’ ’

it is verified that the desired transformation 7T is given by

T=5"T. (24)

In the remainder of this problem, a matrix S satisfying (22) will be constructed. Note that

[0 —aﬂ 25)

1 —al

is in companion form, such that a; and as are the coefficients of the characteristic polynomial
of AT. The characteristic polynomial reads

A+6 7

AAT(/\):det()\I—AT)z‘ 3 y_4

‘:(/\+6)(/\—4)+21:)\2+2/\—3, (26)



such that
a1 =2, as = —3. (27)

Observe that Ayr(X\) = Aa(A). To find the corresponding transformation S, compute

qz=0T=[_ﬂ> (28)
_ ATAT T_ |9 -2 _ |1

w=atcrac= [ 5 e[ 2] [0, (29)

after which the transformation matrix S is given as

1 -2
S=[q %][0 1} (30)
Using the inverse
1|12

s =53] (1)

it is readily verified that (22) holds. Finally, the relation (24) gives the desired transformation

TST{EQ(H. (32)

By similarity transformation, the matrix A — GC and
T(A-GO) T ' =TAT™ ' —-TGCT™* (33)

have the same eigenvalues. Denoting G = T'G' and defining the resulting matrix as

G — Bﬂ 7 (34)
it follows that
_ = _ 0 —(CLQ + g2)
TAT ' —GeT™ ! = ) 35
{1 —(a1 +g1) (35)

Here, the result (20) is used. As the matrix in (35) is in companion form (in fact, the
transpose of a companion form), it follows that its characteristic polynomial reads

Ara—coyr—1(A) = X + (a1 + g1)A + (a2 + g2). (36)

To place the eigenvalues at —2 and —4, this polynomial should have these values as its roots,
ie.,

M+ (a1 + g+ (a2 +g2) = (A +2)(A+4) = A2 + 6) + 8, (37)
leading to
g =6—a; =6—-2=4, go=8—ay =843 =11. (38)

Then, using the definition G = TG and (34), it follows that

o-ro- (3] [4]- (3]



Problem 4 (4+ 447+ 7= 22 points)

Consider the system

8 2 -7 0
i) = | —12 2 14 | 2(&) + | 1 | u(t). (40)
0 0 -3 1

(a) Stability of (40) is determined by the eigenvalues of A. Due to the upper block-triangular
structure of A, its spectrum equals

o(4) = o ([812 22D U{=3). (41)

The eigenvalues of the upper-left block are obtained as the roots of

A—8 =2
‘ 19 >\+2‘ =A=8)A+2)+24=X1-6A+8=(A-2)(\—4), (42)
which read 2 and 4. Thus, the spectrum of A reads
a(A) ={-3,2,4} (43)

and the system is not (asymptotically stable). Namely, there exist eigenvalues with positive
real parts.

(b) The reachable subspace W of the system (40) is given as

[0 -5 5 ]
W=im[B AB A2B] =im |1 12 —6 |, (44)
1-3 9 |
[0 -5 5 ] 0-15
—im|115 6| =im|1 3 —6|, (45)
10 9 | 10 9

where elementary column operations are performed to obtain the results (45). Now, as

5 0 -1
6| =9|1|-5]| 3 |, (46)
9 1 0
it follows that the dimension of the reachable subspace W is two. Thus, a basis representation
is given as
0 -1
W=span{|1|,| 3 |}. (47)
1 0



For the remainder of this problem, consider the system

a0 0 1
zt)=1{1a 0 | z@)+ | 0| u(®), (48)
0b -1 b

where a and b are real parameters.

(c¢) Using the Hautus test, the system (48) is controllable if and only if

rank [A— A B] =n (49)

for all A € o(A). Here, n = 3.

Due to the lower triangular structure of A, it is immediate that
o(A) ={a, -1}, (50)

where the eigenvalue a has multiplicity 2. For A = a, (49) reads

00 0 1
[A—aIB}: 10 0 0f, (51)
0b—-1—abd
whereas A = —1 leads to
a+1 0 01
[A+IB]=| 1 a+100/, (52)
0 b 0b

For the matrix in (52) to have full column rank n, it is necessary that b # 0. In this case
(52) has full column rank for all a. Returning to (51), it is clear that the condition b # 0
implies full column rank for all a. Thus, the system (48) is controllable if and only if

a€R, b#£0. (53)

The system (48) is stabilizable if and only if
rank [A— A B] =n (54)

for all A € o(A) such that Re()\) > 0, as follows from the Hautus test. As before, n = 3.

Considering the spectrum of A in (50), two cases can be considered. First, for a < 0,
the system is asymptotically stable and, hence, stabilizable. Thus, a < 0 is sufficient for
stabilizability. Next, we consider the case a > 0. Then, the matrix in (51) needs to have full
column rank, which is implied by the condition a > 0 and the system is stabilizable.

Combining the two cases above, it is concluded that (48) is stabilizable for all
acR, beR. (55)

Finally, note that the condition for controllability (53) implies stabilizability as expected.



Problem 5 (4 + 14 = 18 points)

Consider the system
z(t) = Az(t) + Bul(t)

and recall the general solution for a given initial condition xg and input u(-) as

¢
Xy (t, ) = et —|—/ eA(t_S)Bu(s) ds.
0

Assume that the system (56) is controllable and define the input signal
a(t) = BTe ATt K e ATy,

for some x7 € R™ and fixed T > 0 and where
T T
K:/ e~ *BBTe " * ds.
0
(a) Let xp = 0. Then, a direct computation shows
T
x5(T,0) :/ eAT=%) Bii(s) ds
0

T
— / eA(T*S)BBTefATSKflefATxT ds
0

T
T
:eAT/ e *BBTe ™ *ds K le " Tap
0

= eATKKflefATxT
— QAT —AT .

T

=XT.

(65)

Here, (61) follows by direct substitution of (58), whereas the definition of K in (59) is used

to obtain (63).

(b) Nonsingularity of K will be shown by contradiction. To this end, assume that K is singular.

Then, there exists v € R, v # 0, such that Kv = 0. As a result, also vT Kv = 0, i.e.,

T T
0= / vTe=AsBBTe=A 5y ds = / HBTe_ATsng ds,
0 0

where || - ||2 denotes the Euclidian norm. As BTe—A"s

equivalent to
BTe A5y =0, Vsel0,T).
In the remainder, we will consider the transposed version
vle B =0, Vsel0,T).
Evaluating (68) for s = 0 leads to
vITB =0.
Next, as vTe™4°B is identically zero over the interval [0, 7], it follows that

d* {vTe—AsB} _ (_1)vaAke—AsB —0

dsk

(66)

v is a continuous function of s, (66) is

(67)

(68)



for all s € [0,T]. Evaluation of (70) for s = 0 gives
vTA*B =0, k=1,2,..., (71)
which in turn implies
0" [B AB --- A"7'B| =0, (72)
where it is recalled that v # 0. Thus,
rank [ B AB -+ A""'B] <n, (73)

which contradicts the fact that (56) is controllable. As a result, K is nonsingular.

(10 points free)



