## Project systems theory - Solutions

Final exam 2017-2018, Thursday 25 January 2018, 9:00-12:00

## Problem 1

A simple model of a magnetic levitation system is given as

$$
\begin{equation*}
m \ddot{q}(t)=m g-\frac{1}{2} \frac{L}{(1+q(t))^{2}} u^{2}(t), \tag{1}
\end{equation*}
$$

with $q(t)$ the position of the levitated mass with mass $m>0$ and $g>0$ the gravitational constant. The input current to the electromagnet that suspends the mass is denoted by $u(t)$ and $L>0$ is a constant.
(a) To write (1) in nonlinear state-space form, introduce the state

$$
x=\left[\begin{array}{l}
x_{1}  \tag{2}\\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
q \\
\dot{q}
\end{array}\right] .
$$

Then, it is immediate that $\dot{x}_{1}=x_{2}$. The dynamics for $x_{2}$ follows from (1), leading to

$$
\dot{x}=\left[\begin{array}{l}
\dot{x}_{1}  \tag{3}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
g-\frac{1}{2 m} \frac{L}{\left(1+x_{1}\right)^{2}} u^{2}
\end{array}\right]=f(x, u) .
$$

(b) Let

$$
\bar{x}=\left[\begin{array}{l}
\bar{x}_{1}  \tag{4}\\
\bar{x}_{2}
\end{array}\right]=\left[\begin{array}{l}
\bar{q} \\
0
\end{array}\right]
$$

be the desired equilibrium point for some $\bar{q}>0$. To find the constant input $u(t)=\bar{u}$, the equation

$$
\begin{equation*}
0=f(\bar{x}, \bar{u}) \tag{5}
\end{equation*}
$$

needs to be solved. Using (3), we obtain $0=\bar{x}_{2}$ for the first coordinate, which indeed corresponds to (4). The equation for the second coordinate yields

$$
\begin{equation*}
g=\frac{1}{2 m} \frac{L}{(1+\bar{q})^{2}} \bar{u}^{2}, \tag{6}
\end{equation*}
$$

which has the solution (recall that a positive solution $\bar{u}>0$ is sought)

$$
\begin{equation*}
\bar{u}=\sqrt{\frac{2 m g}{L}}(1+\bar{q}) . \tag{7}
\end{equation*}
$$

(c) In order to find the linearized dynamics around the equilibrium point given by $\bar{x}$ and $\bar{u}$, define the perturbations

$$
\begin{equation*}
\tilde{x}=x-\bar{x}, \quad \tilde{u}=u-\bar{u} . \tag{8}
\end{equation*}
$$

Then, the linearized dynamics is given as

$$
\begin{equation*}
\dot{\tilde{x}}(t)=\frac{\partial f}{\partial x}(\bar{x}, \bar{u}) \tilde{x}(t)+\frac{\partial f}{\partial u}(\bar{x}, \bar{u}) \tilde{u}(t), \tag{9}
\end{equation*}
$$

after which it can be concluded from (3) that

$$
\frac{\partial f}{\partial x}(x, u)=\left[\begin{array}{cc}
0 & 1  \tag{10}\\
\frac{L}{m}\left(1+x_{1}\right)^{-3} u^{2} & 0
\end{array}\right] .
$$

Evaluation of the result at $(\bar{x}, \bar{u})$ gives, after substitution of (7),

$$
\frac{\partial f}{\partial x}(\bar{x}, \bar{u})=\left[\begin{array}{cc}
0 & 1  \tag{11}\\
2 g(1+\bar{q})^{-1} & 0
\end{array}\right]
$$

Similarly,

$$
\frac{\partial f}{\partial u}(x, u)=\left[\begin{array}{c}
0  \tag{12}\\
-\frac{1}{m} \frac{L}{\left(1+x_{1}\right)^{2}} u
\end{array}\right]
$$

such that

$$
\frac{\partial f}{\partial u}(\bar{x}, \bar{u})=\left[\begin{array}{c}
0  \tag{13}\\
-\sqrt{\frac{2 g L}{m}} \frac{1}{1+\bar{q}}
\end{array}\right] .
$$

## Problem 2

Consider the polynomial

$$
\begin{equation*}
p(\lambda)=\lambda^{4}+3 \lambda^{3}+\lambda^{2}+a \lambda+2 a \tag{14}
\end{equation*}
$$

where $a \in \mathbb{R}$.
As a first step in finding the values of $a$ for which (14) is stable, note that a necessary condition for stability is that all coefficients have the same sign. As a result, we need $a>0$.

To proceed, consider the following Routh-Hurwitz table:


Recall that the Routh-Hurwitz criterion states that the polynomial $p$ is stable if its two leading coefficients have the same sign and the polynomial obtained in step 1 is stable. The leading coefficients 1 and 3 satisfy the first criterion. Then, in order for the polynomial obtained in step 1 to be stable, it is again required that all coefficients have the same sign. This leads to the condition $0<a<3$.

The repetition of this reasoning (note that the sign of 9 and $3-a$ is the same as $0<a<3$ ) leads to the result of step 2. Again, for the polynomial obtained in step 2, a necessary condition for stability is that all coefficients have the same sign. In this case, we need

$$
\begin{equation*}
-3 a(a+15)>0 \tag{15}
\end{equation*}
$$

which however contradicts with the earlier condition $0<a<3$ (explicitly solving for (15) gives $-15<a<0)$. Consequently, there does not exist a parameter $a \in \mathbb{R}$ such that the polynomial (14) is stable.

Consider the system

$$
\begin{equation*}
\dot{x}(t)=A x(t), \quad y(t)=C x(t) \tag{16}
\end{equation*}
$$

with state $x(t) \in \mathbb{R}^{2}$, output $y(t) \in \mathbb{R}$, and where

$$
A=\left[\begin{array}{ll}
-6 & 3  \tag{17}\\
-7 & 4
\end{array}\right], \quad C=\left[\begin{array}{ll}
-2 & 1
\end{array}\right]
$$

(a) The observability matrix of the pair $(A, C)$ is given by

$$
\left[\begin{array}{c}
C  \tag{18}\\
C A
\end{array}\right]=\left[\begin{array}{cc}
-2 & 1 \\
5 & -2
\end{array}\right]
$$

Then, as the rows in this matrix are linearly independent, it follows that

$$
\operatorname{rank}\left[\begin{array}{c}
C  \tag{19}\\
C A
\end{array}\right]=\operatorname{rank}\left[\begin{array}{cc}
-2 & 1 \\
5 & -2
\end{array}\right]=2
$$

Hence, the system (17) is observable.
(b) To find a nonsingular matrix $T$ and real numbers $a_{1}, a_{2}$ such that

$$
T A T^{-1}=\left[\begin{array}{ll}
0 & -a_{2}  \tag{20}\\
1 & -a_{1}
\end{array}\right], \quad C T^{-1}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]
$$

holds, the duality between controllability and observability can be exploited. Namely, observability of $(A, C)$ implies that $\left(A^{\mathrm{T}}, C^{\mathrm{T}}\right)$ is controllable. Thus, we consider the system

$$
A^{\mathrm{T}}=\left[\begin{array}{cc}
-6 & -7  \tag{21}\\
3 & 4
\end{array}\right], \quad C^{\mathrm{T}}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

and look for a transformation $S$ such that

$$
S^{-1} A^{\mathrm{T}} S=\left[\begin{array}{cc}
0 & 1  \tag{22}\\
-a_{2} & -a_{1}
\end{array}\right], \quad S^{-1} C^{\mathrm{T}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Then, using

$$
\left[\begin{array}{cc}
0 & -a_{2}  \tag{23}\\
1 & -a_{1}
\end{array}\right]=\left(S^{-1} A^{\mathrm{T}} S\right)^{\mathrm{T}}=S^{\mathrm{T}} A S^{-\mathrm{T}}, \quad\left[\begin{array}{ll}
0 & 1
\end{array}\right]=\left(S^{-1} C^{\mathrm{T}}\right)^{\mathrm{T}}=C S^{-\mathrm{T}}
$$

it is verified that the desired transformation $T$ is given by

$$
\begin{equation*}
T=S^{\mathrm{T}} \tag{24}
\end{equation*}
$$

In the remainder of this problem, a matrix $S$ satisfying (22) will be constructed. Note that

$$
\left[\begin{array}{ll}
0 & -a_{2}  \tag{25}\\
1 & -a_{1}
\end{array}\right]
$$

is in companion form, such that $a_{1}$ and $a_{2}$ are the coefficients of the characteristic polynomial of $A^{\mathrm{T}}$. The characteristic polynomial reads

$$
\Delta_{A^{\mathrm{T}}}(\lambda)=\operatorname{det}\left(\lambda I-A^{\mathrm{T}}\right)=\left|\begin{array}{cc}
\lambda+6 & 7  \tag{26}\\
-3 & \lambda-4
\end{array}\right|=(\lambda+6)(\lambda-4)+21=\lambda^{2}+2 \lambda-3,
$$

such that

$$
\begin{equation*}
a_{1}=2, \quad a_{2}=-3 . \tag{27}
\end{equation*}
$$

Observe that $\Delta_{A^{\mathrm{T}}}(\lambda)=\Delta_{A}(\lambda)$. To find the corresponding transformation $S$, compute

$$
\begin{align*}
& q_{2}=C^{\mathrm{T}}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]  \tag{28}\\
& q_{1}=A^{\mathrm{T}} C^{\mathrm{T}}+a_{1} C^{\mathrm{T}}=\left[\begin{array}{c}
5 \\
-2
\end{array}\right]+2\left[\begin{array}{c}
-2 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \tag{29}
\end{align*}
$$

after which the transformation matrix $S$ is given as

$$
S=\left[\begin{array}{ll}
q_{1} & q_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & -2  \tag{30}\\
0 & 1
\end{array}\right]
$$

Using the inverse

$$
S^{-1}=\left[\begin{array}{ll}
1 & 2  \tag{31}\\
0 & 1
\end{array}\right]
$$

it is readily verified that (22) holds. Finally, the relation (24) gives the desired transformation

$$
T=S^{\mathrm{T}}=\left[\begin{array}{cc}
1 & 0  \tag{32}\\
-2 & 1
\end{array}\right]
$$

(c) By similarity transformation, the matrix $A-G C$ and

$$
\begin{equation*}
T(A-G C) T^{-1}=T A T^{-1}-T G C T^{-1} \tag{33}
\end{equation*}
$$

have the same eigenvalues. Denoting $\bar{G}=T G$ and defining the resulting matrix as

$$
\bar{G}=\left[\begin{array}{l}
g_{2}  \tag{34}\\
g_{1}
\end{array}\right]
$$

it follows that

$$
T A T^{-1}-\bar{G} C T^{-1}=\left[\begin{array}{l}
0-\left(a_{2}+g_{2}\right)  \tag{35}\\
1-\left(a_{1}+g_{1}\right)
\end{array}\right]
$$

Here, the result (20) is used. As the matrix in (35) is in companion form (in fact, the transpose of a companion form), it follows that its characteristic polynomial reads

$$
\begin{equation*}
\Delta_{T(A-G C) T^{-1}}(\lambda)=\lambda^{2}+\left(a_{1}+g_{1}\right) \lambda+\left(a_{2}+g_{2}\right) \tag{36}
\end{equation*}
$$

To place the eigenvalues at -2 and -4 , this polynomial should have these values as its roots, i.e.,

$$
\begin{equation*}
\lambda^{2}+\left(a_{1}+g_{1}\right) \lambda+\left(a_{2}+g_{2}\right)=(\lambda+2)(\lambda+4)=\lambda^{2}+6 \lambda+8 \tag{37}
\end{equation*}
$$

leading to

$$
\begin{equation*}
g_{1}=6-a_{1}=6-2=4, \quad g_{2}=8-a_{2}=8+3=11 . \tag{38}
\end{equation*}
$$

Then, using the definition $\bar{G}=T G$ and (34), it follows that

$$
G=T^{-1} \bar{G}=\left[\begin{array}{ll}
1 & 0  \tag{39}\\
2 & 1
\end{array}\right]\left[\begin{array}{c}
11 \\
4
\end{array}\right]=\left[\begin{array}{l}
11 \\
26
\end{array}\right] .
$$

Consider the system

$$
\dot{x}(t)=\left[\begin{array}{ccc}
8 & 2 & -7  \tag{40}\\
-12 & -2 & 14 \\
0 & 0 & -3
\end{array}\right] x(t)+\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] u(t) .
$$

(a) Stability of (40) is determined by the eigenvalues of $A$. Due to the upper block-triangular structure of $A$, its spectrum equals

$$
\sigma(A)=\sigma\left(\left[\begin{array}{cc}
8 & 2  \tag{41}\\
-12 & -2
\end{array}\right]\right) \cup\{-3\}
$$

The eigenvalues of the upper-left block are obtained as the roots of

$$
\left|\begin{array}{cc}
\lambda-8 & -2  \tag{42}\\
12 & \lambda+2
\end{array}\right|=(\lambda-8)(\lambda+2)+24=\lambda^{2}-6 \lambda+8=(\lambda-2)(\lambda-4),
$$

which read 2 and 4 . Thus, the spectrum of $A$ reads

$$
\begin{equation*}
\sigma(A)=\{-3,2,4\} \tag{43}
\end{equation*}
$$

and the system is not (asymptotically stable). Namely, there exist eigenvalues with positive real parts.
(b) The reachable subspace $\mathcal{W}$ of the system (40) is given as

$$
\begin{align*}
\mathcal{W}=\operatorname{im}\left[\begin{array}{lll}
B & A B & A^{2} B
\end{array}\right] & =\operatorname{im}\left[\begin{array}{ccc}
0 & -5 & 5 \\
1 & 12 & -6 \\
1 & -3 & 9
\end{array}\right],  \tag{44}\\
& =\operatorname{im}\left[\begin{array}{ccc}
0 & -5 & 5 \\
1 & 15 & -6 \\
1 & 0 & 9
\end{array}\right]=\operatorname{im}\left[\begin{array}{ccc}
0 & -1 & 5 \\
1 & 3 & -6 \\
1 & 0 & 9
\end{array}\right], \tag{45}
\end{align*}
$$

where elementary column operations are performed to obtain the results (45). Now, as

$$
\left[\begin{array}{c}
5  \tag{46}\\
-6 \\
9
\end{array}\right]=9\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]-5\left[\begin{array}{c}
-1 \\
3 \\
0
\end{array}\right]
$$

it follows that the dimension of the reachable subspace $\mathcal{W}$ is two. Thus, a basis representation is given as

$$
\mathcal{W}=\operatorname{span}\left\{\left[\begin{array}{l}
0  \tag{47}\\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
3 \\
0
\end{array}\right]\right\}
$$

For the remainder of this problem, consider the system

$$
\dot{x}(t)=\left[\begin{array}{ccc}
a & 0 & 0  \tag{48}\\
1 & a & 0 \\
0 & b & -1
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
0 \\
b
\end{array}\right] u(t),
$$

where $a$ and $b$ are real parameters.
(c) Using the Hautus test, the system (48) is controllable if and only if

$$
\begin{equation*}
\operatorname{rank}[A-\lambda I B]=n \tag{49}
\end{equation*}
$$

for all $\lambda \in \sigma(A)$. Here, $n=3$.
Due to the lower triangular structure of $A$, it is immediate that

$$
\begin{equation*}
\sigma(A)=\{a,-1\} \tag{50}
\end{equation*}
$$

where the eigenvalue $a$ has multiplicity 2 . For $\lambda=a$, (49) reads

$$
\left[\begin{array}{cc}
A-a I & B
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 1  \tag{51}\\
1 & 0 & 0 & 0 \\
0 & b & -1-a & b
\end{array}\right]
$$

whereas $\lambda=-1$ leads to

$$
\left[\begin{array}{lll}
A+I & B
\end{array}\right]=\left[\begin{array}{cccc}
a+1 & 0 & 0 & 1  \tag{52}\\
1 & a+1 & 0 & 0 \\
0 & b & 0 & b
\end{array}\right]
$$

For the matrix in (52) to have full column rank $n$, it is necessary that $b \neq 0$. In this case (52) has full column rank for all $a$. Returning to (51), it is clear that the condition $b \neq 0$ implies full column rank for all $a$. Thus, the system (48) is controllable if and only if

$$
\begin{equation*}
a \in \mathbb{R}, \quad b \neq 0 \tag{53}
\end{equation*}
$$

(d) The system (48) is stabilizable if and only if

$$
\begin{equation*}
\operatorname{rank}[A-\lambda I B]=n \tag{54}
\end{equation*}
$$

for all $\lambda \in \sigma(A)$ such that $\operatorname{Re}(\lambda) \geq 0$, as follows from the Hautus test. As before, $n=3$.
Considering the spectrum of $A$ in (50), two cases can be considered. First, for $a<0$, the system is asymptotically stable and, hence, stabilizable. Thus, $a<0$ is sufficient for stabilizability. Next, we consider the case $a \geq 0$. Then, the matrix in (51) needs to have full column rank, which is implied by the condition $a \geq 0$ and the system is stabilizable.
Combining the two cases above, it is concluded that (48) is stabilizable for all

$$
\begin{equation*}
a \in \mathbb{R}, \quad b \in \mathbb{R} \tag{55}
\end{equation*}
$$

Finally, note that the condition for controllability (53) implies stabilizability as expected.

Consider the system

$$
\begin{equation*}
\dot{x}(t)=A x(t)+B u(t) \tag{56}
\end{equation*}
$$

and recall the general solution for a given initial condition $x_{0}$ and input $u(\cdot)$ as

$$
\begin{equation*}
x_{u}\left(t, x_{0}\right)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-s)} B u(s) \mathrm{d} s \tag{57}
\end{equation*}
$$

Assume that the system (56) is controllable and define the input signal

$$
\begin{equation*}
\bar{u}(t)=B^{\mathrm{T}} e^{-A^{\mathrm{T}} t} K^{-1} e^{-A T} x_{T} \tag{58}
\end{equation*}
$$

for some $x_{T} \in \mathbb{R}^{n}$ and fixed $T>0$ and where

$$
\begin{equation*}
K=\int_{0}^{T} e^{-A s} B B^{\mathrm{T}} e^{-A^{\mathrm{T}} s} \mathrm{~d} s \tag{59}
\end{equation*}
$$

(a) Let $x_{0}=0$. Then, a direct computation shows

$$
\begin{align*}
x_{\bar{u}}(T, 0) & =\int_{0}^{T} e^{A(T-s)} B \bar{u}(s) \mathrm{d} s  \tag{60}\\
& =\int_{0}^{T} e^{A(T-s)} B B^{\mathrm{T}} e^{-A^{\mathrm{T}} s} K^{-1} e^{-A T} x_{T} \mathrm{~d} s  \tag{61}\\
& =e^{A T} \int_{0}^{T} e^{-A s} B B^{\mathrm{T}} e^{-A^{\mathrm{T}} s} \mathrm{~d} s K^{-1} e^{-A T} x_{T}  \tag{62}\\
& =e^{A T} K K^{-1} e^{-A T} x_{T}  \tag{63}\\
& =e^{A T} e^{-A T} x_{T}  \tag{64}\\
& =x_{T} \tag{65}
\end{align*}
$$

Here, (61) follows by direct substitution of (58), whereas the definition of $K$ in (59) is used to obtain (63).
(b) Nonsingularity of $K$ will be shown by contradiction. To this end, assume that $K$ is singular. Then, there exists $v \in \mathbb{R}, v \neq 0$, such that $K v=0$. As a result, also $v^{\mathrm{T}} K v=0$, i.e.,

$$
\begin{equation*}
0=\int_{0}^{T} v^{\mathrm{T}} e^{-A s} B B^{\mathrm{T}} e^{-A^{\mathrm{T}} s} v \mathrm{~d} s=\int_{0}^{T}\left\|B^{\mathrm{T}} e^{-A^{\mathrm{T}} s} v\right\|_{2}^{2} \mathrm{~d} s \tag{66}
\end{equation*}
$$

where $\|\cdot\|_{2}$ denotes the Euclidian norm. As $B^{\mathrm{T}} e^{-A^{\mathrm{T}} s} v$ is a continuous function of $s,(66)$ is equivalent to

$$
\begin{equation*}
B^{\mathrm{T}} e^{-A^{\mathrm{T}} s} v=0, \quad \forall s \in[0, T] \tag{67}
\end{equation*}
$$

In the remainder, we will consider the transposed version

$$
\begin{equation*}
v^{\mathrm{T}} e^{-A s} B=0, \quad \forall s \in[0, T] \tag{68}
\end{equation*}
$$

Evaluating (68) for $s=0$ leads to

$$
\begin{equation*}
v^{\mathrm{T}} B=0 \tag{69}
\end{equation*}
$$

Next, as $v^{\mathrm{T}} e^{-A s} B$ is identically zero over the interval $[0, T]$, it follows that

$$
\begin{equation*}
\frac{\mathrm{d}^{k}}{\mathrm{~d} s^{k}}\left\{v^{\mathrm{T}} e^{-A s} B\right\}=(-1)^{k} v^{\mathrm{T}} A^{k} e^{-A s} B=0 \tag{70}
\end{equation*}
$$

for all $s \in[0, T]$. Evaluation of (70) for $s=0$ gives

$$
\begin{equation*}
v^{\mathrm{T}} A^{k} B=0, \quad k=1,2, \ldots, \tag{71}
\end{equation*}
$$

which in turn implies

$$
\begin{equation*}
v^{\mathrm{T}}\left[B A B \cdots A^{n-1} B\right]=0 \tag{72}
\end{equation*}
$$

where it is recalled that $v \neq 0$. Thus,

$$
\operatorname{rank}\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B \tag{73}
\end{array}\right]<n
$$

which contradicts the fact that (56) is controllable. As a result, $K$ is nonsingular.
(10 points free)

